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Preliminary



The multi-stage pipeline

The multi-stage pipeline for conversational search!:

Conversational query Retrieval Re-ranking
. reformulation /
Q<isqi q; I
‘ T5-CANARD ‘ ( TcTCoIBERT D ( monoT5 ‘

With conversational query reformulation (CQR), we can thereby
regard the conversational search as a standard passage retrieval task.

LWe treated the multi-stage pipeline with CQR as our baseline.
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Our Pipeline



The conversationally encoded representation

Without CQR module, we encoded the multi-turn queries
(Q<i ={q1,92,-..gi—1}; i) on embedding space.

Conversational query Retrieval Re-ranking

reformulation
BM25

‘ T5-CANARD ‘ ( TcTColBERT Y w monoT5 \}

( N [

Conversational dense retrieval Conversational
Qi qi Re-ranking

CQE ) ‘ ConvRerank ‘

\ /N

To achieve, we integrated our pipeline with conversational dense retriever
and re-ranker (e.g. CQE and ConvRerank).
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ConvDR: Contextualized query embeddings (CQE)

The CQE [3] approach is basically representing Q~; and g; as a dense
vector (using the fine-tuned conversational query encoder).

Bag of words
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ANN search

Besides CQE, we adopted CQE-hybrid® for top-1000 candidate passages

e Dense: CQE (using ANN search)
e Sparse: CQE's query expansion (using BM25 search)

1The important tokens with greater L2-norm of token embeddings (see detail in the CQE paper)
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ConvRerank: monoT5 with conversational query

We then predict their relevance scores using point-wise re-rankers.

Specifically, we followed monoT5 [4] and further transform the model
into a conversational passage re-ranker (ConvRerank) with Q; and g;.

ConvRerank’s T5 text-to-text formulation

Processed input
Query: g; Context: g1 ||| g2 ||| .-- gi—1 Document: d Relevant:

Target (for training)

true/false

Processed output (for inferencing)
P("true") (from logit normalization techniques)
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Fine-tuning (weakly-supervised)




Pseudo labeling of CQE [3]

We use the rewritten and multi-turn query from CANARD [2] and
CAsT'20 passage collections.

Dense passage retrieval ( Pseudo-labeling ) ( Further fine-tuning
(BM25+CoIBERT)
" Manual ‘ Ranked list Multi-turn user’s utterances

1,2,3 Positive passage
Negative passage

410200 ~
~ 0 || oe====== - ‘/ Warm up models \‘
CANARD & CAsT’20 —_— L TCT-ColBERT )

Finally, we acquired the training pairs (i.e., multi-turn query, passage):

rewritten query

({q17 qz, ..., q/—l}; CI/) 5 p,Jra p,_
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Higher quality pseudo labeling for ConvRerank

Again, we use the rewritten and multi-turn query from CANARD [2] and

CAsT'20 collections.

Two-stage pipeline retrieval

(BM25+monoT5)
N Manual
Manual ‘ ‘ Rewritten query ‘

Rewrlnen quefy + answer

| CANARD & CAsT’20 !

Rankedlist | | Rankedlist |

Pseudo-labeling
(Refer to the answer’s view)

Further fine-tuning

[ ]
= =

Match (2)
Match (3] —_—

Multi-turn user’s utterances
Positive passage
Negative passage

Warm up models ‘
monoT5

Finally, we acquired the training pairs (i.e., multi-turn query, passage):

({q1, 92, ...

aqi—l}; CI/)7P,+/P,_a
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Results On CAsT’20




Full ranking performance

DCG

Pipeline Rewriting n

3 5 500 Overall
BM25 v 0.1464 0.1432 0.2582 0.2824
+ monoT5 v 0.3701 0.3613 0.4067 0.4089
TctColBERT v 0.3381 0.3271 0.4349 0.4520
+ monoT5 v 0.3819 0.3786 0.4801 0.4888
CQE X 0.3416 0.3288 0.4335 0.4532
+ monoT5 v 0.3987 0.3876 0.4838 0.4946
+ ConvRerank X 0.4026 0.3973 0.4818 0.4977
CQE-hybrid X 0.3676 0.3506 0.4752 0.4954
-+ monoT5 v 0.3939 0.3857 0.5051 0.5196
+ ConvRerank X 0.4087 0.3993 0.5097 0.5273

Table 1: The settings in boldface indicate the first-stage retrieval. v: the queries used
are rewritten by CQR module.
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Ablation experiments (monoT5 wo/ rewrite)

What if we predict the relevance scores for conversational query without
fine-tune a new re-ranker (ConvRerank)?

DCG
Pipeline Query used "
3 5 500
BM25-+monoT5 Feor(Q<i;gi) 0.3343 0.3192 0.3913
BM25-+monoT5 (Q<ir qi) 0.3563 0.3449 0.3926

BM25+ConvRerank (Q<ii qi) 0.3777 0.3616 0.3954

For the better effectiveness, we need to fine-tune a re-ranking model for
conversational query.
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Ablation experiments

Why we adopted another pseudo-labeling ?

DCG
Pipeline Pseudo-labeling "
3 5 500
BM25+monoT5 - 0.3343 0.3192 0.3913
BM25+ConvRerank  CQE's pseudo labels. 0.3639 0.3473 0.3859

BM25-+ConvRerank  Pseudo labels w/ answer 0.3777 0.3616 0.3954

For better quality of positive and negative training pairs, we adopted
aforementioned pseudo-labeling with answer’s view.
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Mixed-initiative interactions




The workflow of conversational search system

We were planing to include the Ml information into our pipeline (the
dotted lines)
Conversational search (one-shot)

Retriever ~j————— Reranker ——

1

| :
. 1 H
i i H i
ca; ! 1

. R
. C_ (-ll _____ ~ Question
\__ generator /

; ?

Conversational search (with clarification)

However, so far we have only (roughly) fine-tune the question generator. 7



Clarification question generation (CQG)

For the mixed-initiative sub-task, we fine-tune a CQG model:

e Generative model: T5
e Dataset: ClariQ [1]

e Initial question: g;

e Context: historical clarification cycle (if any), including system asked
question cg¥) and user's feedback ca%).

e Keywords: augmented 10 words from top-30 relevant passages.

e Clarification question: cquﬂ)

CQG: T5 text-to-text formulation

Input source
Context: q; ||| cq,m l cq,(") [I| ... Keywords: kwy, kws, ... Clarifying:

Output target
cqu)
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Conclusion




Conclusion

For the main task,

e Open-retrieval question answering (ORConvQA [5])
e Re-ranker with summarization
e More effective fine-tuning framework

e Knowledge distillation (bi-encoder <+ cross-encoder)
For Ml-subtask,

e Integrating modules (discriminator, generator, ...etc)
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Thank You!

Are there any questions you'd like to ask?

Jia-Huei Ju jhjooQ@citi.sinica.edu.tw
Ming-Feng Tsai  mftsai@nccu.edu.tw
Chuan-Ju Wang  cjwang@citi.sinica.edu.tw
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Follow-up modules

As our future works, we will start with different directions.

1. Discriminator (When to clarify)

e Query performance predictor.
e Relevance scores.

2. Question generator (What to ask) .
e Generating questions that can help first-stage retrieval.
3. Conversation reformulator .

e Fine-tune the ConvDR (e.g. CQE) with additional clarification turns
(i.e., system asked questions and the feedbacks).
e Dialogue summarization.
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