Improving Conversational Passage Re-ranking with View Ensemble

Jia-Huei Ju*, Sheng-Chieh Lin[†], Ming-Feng Tsai[‡], and Chuan-Ju Wang*

*Research Center for Information Technology Innovation, Academia Sinica [†]David R. Cheriton School of Computer Science, University of Waterloo [‡]Department of Computer Science, National Chengchi University

Information needs in ConvSearch have an unique multi-turn structure:

Turns	User's utterance
u_1	What is throat cancer?
<i>u</i> ₂	ls it treatable?
U ₃	Tell me about lung cancer.
И4	What are its symptoms?
<i>u</i> ₇	What is the first sign of it?

In this work, a conversational query at turn i is denoted as

$$\underbrace{q_i}_{\text{Conv. Info. need}} = \{\underbrace{u_i}_{\text{Info. need}}; \underbrace{u_1, u_2, u_3, \dots, u_{i-1}}_{\substack{\text{context}\\ \text{e.g., historical utterances}}}\}.$$

Cascaded architecture for ad-hoc search

The retrieval-and-rerank pipeline:

$$R = \mathcal{F}_{\mathrm{RR}} \Big(q'; p \in \mathcal{F}_{\mathrm{RT}}(q', p \in \mathcal{D}) \Big).$$

Retrieving candidate passages

where R is a (re-)ranked list of relevant passages p for a given query q'.

To fit this effective architecture to ConvSearch, **conversational query reformulation** (CQR) has been recognized as an important module.

CQR reformulates the conversational query into a **de-contextualized** ad-hoc query via T5-rewriting, HQExp, etc.

$$q'_i = \mathcal{F}_{CQR}(u_i; u_1, u_2, ..., u_{i-1})$$

Recently, conversational dense retrieval (ConvDR) has shown the great success of integrating CQR into bi-encoder models.

Cascaded architecture for ConvSearch

$$R = \mathcal{F}_{\text{ConvRerank}} \left(\boldsymbol{q}; \boldsymbol{p} \in \mathcal{F}_{\text{ConvDR}}(\boldsymbol{q}, \boldsymbol{p} \in \mathcal{D}) \right)$$

Retrieving candidate passages

q is a raw conversational query without any reformulation.

Follow ConvDR's success, we want to build a **conversational passage re-ranker (ConvRerank)** for improving the top-ranking effectiveness. \implies similar to ConvDR, perform re-ranking **without** reformulation.

Pseudo-labeling with View Ensemble

To collect the higher-quality training pairs for ConvRerank, we develop a pseudo-labeling approach with **view ensemble**.

The intuition is based on the empirical observation, for example

We hypothesize that **ground-truth answer** can provide more faithful signals of relevance.

(e.g., $\#1 \implies$ false positive vs. $\#7 \implies$ true positive)

First, we use BM25 and monoT5 [4] with different query views,¹

$$\begin{aligned} R^{Q} &= \text{monoT5}\Big(\boldsymbol{q}^{*}; \boldsymbol{p} \in \text{BM25}\big(\boldsymbol{q}^{*}; \boldsymbol{p} \in \mathcal{D}\big)\Big), \\ R^{A} &= \text{monoT5}\Big(\boldsymbol{q}^{*}; \boldsymbol{p} \in \text{BM25}\big(\boldsymbol{q}^{*} \| \boldsymbol{a}; \boldsymbol{p} \in \mathcal{D}\big)\Big) \end{aligned}$$

Second, we ensemble two ranked lists by simply pushing the **agreed** passages to the top; and down the **disagreed** passages to the bottom like

$$R^{\mathrm{EM}(R^Q|R^A)} = S_{\mathrm{agreed}} \parallel S_{\mathrm{disagreed}}.$$

Last, we use this re-ordered list to construct the pseudo training pairs; and fine-tune ConvRerank on this data from monoT5's checkpoint.

¹Follow CQE paper, we use rewritten query q^* from CANARD dataset, and a refers to the ground-truth answer in QuAC dataset.

Experiments

Our baseline approach is setting #(e), which used the T5-rewriting model in advance of re-ranking

		Latency	CAsT'19 Eval	CAsT'20 Eval
#	$Retrieval~(\to Re\text{-ranking})$	(ms/q)	nDCG@3 / 100	nDCG@3 / 100
	Upper-bound system w/ man	ual query		
	$TCT-ColBERT\ [3] \to monoT5$	-	0.583 / 0.545	0.556 / 0.546
(a)	$ConvDR \to BERT\;(RRF)\;[7]$	1900	0.541 / -	0.392 / -
(b)	CRDR [5]	1690	0.553 / -	0.381 / -
(c)	$CTS+MVR^{\dagger}$ [1]	14630	0.565 / -	- / -
(d)	CQE	-	0.492 / 0.447	0.319 / 0.350
(e)	$CQE \rightarrow T5$ -rewrite+monoT5	1910	$0.549^d / 0.484^d$	$0.418^d / 0.395^d$
(f)	$CQE \to ConvRerank$	1675	$0.563^{d} / 0.487^{d}$	0.432 ^d / 0.456 ^{de}

 \implies better top-ranking effectiveness(nDCG \uparrow); more efficient(latency \downarrow).

Table 1: Fine-tune ConvRerank ondifferent training data using differentranked list.

	CAsT'19 Eval	CAsT'20 Eval
Ranked list	nDCG@3 / 100	nDCG@3 / 100
$R^{\mathrm{EM}(R^Q R^A)}$	0.563 ^{bcd} / 0.487 ^{bcd}	0.432 ^{bcd} / 0.456 ^{bcd}
R ^Q	0.517 / 0.467	0.396 / 0.382
R ^A	0.495 / 0.464	0.392 / 0.382
$R^{\text{EM}(R^A R^Q)}$	$0.519^c \ / \ 0.474^{bc}$	0.403 / 0.389 ^{bc}

Table 2: Different first-stage retrieved passagecandidates.

		CAsT'19 Eval	CAsT'20 Eval
	$Retrieval\;(\to Re\text{-ranking})$	nDCG@3 / 100	nDCG@3 / 100
Sparse	$\begin{array}{l} HQE \ [6] \\ HQE \rightarrow T5\text{-rewrite} + monoT5^{\ddagger} \\ HQE \rightarrow ConvRerank^{\ddagger} \end{array}$	0.261 / 0.308 0.553 / 0.519 0.558 / 0.511	0.164 / 0.204 0.379 / 0.377 0.389 / 0.384
Dense	$\begin{array}{l} CQE \ [2] \\ CQE \rightarrow T5\text{-rewrite} + \ monoT5 \\ CQE \rightarrow ConvRerank \end{array}$	0.492 / 0.447 0.549 / 0.484 0.563 / 0.487	0.319 / 0.350 0.418 / 0.395 0.432 / 0.456
Hybrid	$\begin{array}{l} \mbox{CQE-HYB [2]} \\ \mbox{CQE-HYB} \rightarrow \mbox{T5-rewrite} + \mbox{monoT5} \\ \mbox{CQE-HYB} \rightarrow \mbox{ConvRerank} \end{array}$	0.498 / 0.494 0.556 / 0.531 0.584 / 0.534	0.330 / 0.368 0.428 / 0.411 0.424 / 0.410

Conclusion

Our conversational passage re-ranking (ConvRerank)

- uses the pseudo-labeling with the proposed view ensemble trick
- has better effectiveness and decent efficiency

Some future works include,

- Consolidating ConvDR and ConRerank (e.g., w/ co-training).
- Adopting candidate pruning (e.g., dynamically top-k candidates).
- Corpus-only data augmentation with high-quality training pairs.

References

- V. Kumar and J. Callan. Making information seeking easier: An improved pipeline for conversational search. In Proc. of EMNLP (Findings), pages 3971–3980, 2020. doi: 10.18653/v1/2020.findings-emnlp.354.
- S.-C. Lin, J.-H. Yang, and J. Lin. Contextualized query embeddings for conversational search. In Proc. of EMNLP, pages 1004–1015, 2021. doi: 10.18653/v1/2021.emnlp-main.77.
- [3] S.-C. Lin, J.-H. Yang, and J. Lin. In-batch negatives for knowledge distillation with tightly-coupled teachers for dense retrieval. In Proc. of ACL RepL4NLP workshop, pages 163–173, Aug. 2021. doi: 10.18653/v1/2021.repl4nlp-1.17.
- R. Nogueira, Z. Jiang, R. Pradeep, and J. Lin. Document ranking with a pretrained sequence-to-sequence model. In Proc. of EMNLP (Findings), pages 708-718, 2020. doi: 10.18653/v1/2020.findings-emnlp.63.
- H. Qian and Z. Dou. Explicit query rewriting for conversational dense retrieval. In Pro. of EMNLP, pages 4725–4737, 2022. URL https://aclanthology.org/2022.emmlp-main.311.
- [6] J.-H. Yang, S.-C. Lin, C.-J. Wang, J. Lin, and M.-F. Tsai. Query and answer expansion from conversation history. In Proc. of TREC, 2019. URL https://trec.nist.gov/pubs/trec28/papers/CFDA_CLIP.C.pdf.
- [7] S. Yu, Z. Liu, C. Xiong, T. Feng, and Z. Liu. Few-shot conversational dense retrieval. In Proc. of SIGIR, page 829–838, 2021. doi: 10.1145/3404835.3462856.

Thank You!

Are there any questions you'd like to ask?

Jia-Huei Ju	jhjoo@citi.sinica.edu.tw
Sheng-Chieh Lin	j587@uwaterloo.ca
Ming-Feng Tsai	mftsaics.nccu.edu.tw
Chuan-Ju Wang	cjwang@citi.sinica.edu.tw