A Compare-and-contrast Multistage Pipeline for Uncovering Financial Signals in Financial Reports

Jia-Huei Ju¹, Yu-Shiang Huang^{1,2}, Cheng-Wei Lin¹, Che Lin^{2,3,4}, and Chuan-Ju Wang^{1,2}

¹Research Center for Information Technology Innovation, Academia Sinica,

²Graduate Program of Data Science, National Taiwan University and Academia Sinica,

³Graduate Institute of Communication Engineering, National Taiwan University,

⁴Department of Electrical Engineering, National Taiwan University

Table of Contents

Introduction

- Financial Report Analysis
- Motivation

Problem/Task Definitions

Highlighting Task

The Multistage Pipeline

- Overview
- Relation Recognition
- Highlighting Stages

Empirical Data and Evaluation

- Data and Metrics
- Results

Conclusion & Future Works

Introduction

Introduction: Financial Report Analysis

For financial practitioners, financial report is one of the most important materials for knowing a company's operation. For example, the Form 10-K is

- mandated: required by the SEC.
- periodically released
- publicly available
- comprehensive: contains full description of a company's financial activities.

IVIDIA CORPORATION

	PARTI
Item 1.	Business
Item 1A.	Risk Factors
Item 1B.	Unresolved Staff Comments
Item 2.	Properties
Item 3.	Legal Proceedings
Item 4.	Mine Safety Disclosures
	PART II
	Market for Registrant's Common Equity, Relate
Item 5.	Matters and Issuer Purchases of Equity Securitie
Item 6.	[Reserved]
	Management's Discussion and Analysis of Fina
Item 7.	and Results of Operations
Item 7A.	Quantitative and Qualitative Disclosures About N

These documents are so informative; however, mining useful signals needs lots of human efforts

Introduction: Motivations

We observe that financial corpus is

- 1. High overlapping characteristics: on average, about **80% of tokens** used in a company's reports are the **same** (except the "date").
- 2. Yearly-dependant: contents are much **more similar** between arbitrary **adjacent years** than the distant one.

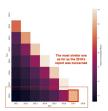


Figure 1: Text similarity heatmap of used tokens between years (from 2011 to 2018). The blocks with lighter color indicate there are more similar.

Based on these characteristics, we introduce a **highlighting task** and proposed a **multistage pipeline** to address the empirical problems.

Problem/Task Definitions

Definitions: The Highlighting Task

The reference-to-target structure:

- Target (\mathcal{D}_{ℓ}) : a focal financial report at year ℓ .
- Reference $(\mathcal{D}_{\ell-1})$: the same company's report at year $\ell-1$.
- A document pair contains multiple reference-to-target (t, r) segment pairs; we denote them as a set T.¹

Highlighter f have to predict the underlying **rationale/important words** by comparing and contrasting the contexts of a given sentence pair.

¹Note that we filter some *irrelevant* (t, r) pairs using a heuristic manner to relieve the human evaluation burden.

Definitions: The Highlighting Task (example)

The highlighting task

$$\mathbf{R} \triangleq P_f(t|r), \quad t \in \mathcal{D}_\ell, r \in \mathcal{D}_{\ell-1}$$

- R: the rationale (words) of the relations of a given (t, r) pair.
- $P_f(\cdot)$: the word importance predicted by a highlighting model f.

The words with higher importance are regarded as financial signals.¹

τ^{α}	2017 (reference)	Net sales in the Americas increased 5%, or \$201.8 million, to \$4,302.9 million
,		Net sales in the Americas decreased 1%, or \$58.5 million, to \$4,513.8 million

Table 1: An example of reference-to-target pair.

 $^{^{1}}$ There are still many factors affect what should be considered as signals; we have a brief discussion in Limitation in our paper.

The Multistage Pipeline

Proposed Pipeline: Overview

Our pipeline design includes the following stages:

- S_0 Document segmentation
- S₁ Relation Recognition
- S_2 Out-of-domain Fine-tuning & S_{2_+} In-domain Fine-tuning

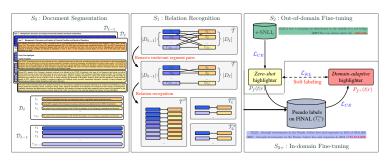


Figure 2: The compare-and-contrast multistage pipeline

Proposed Pipeline S_1 : Relation Recognition

After document segmentation, we categorized each reference-to-target segment pairs $(r, t) \in \mathcal{T}$ into:

- Insignificant relations (\mathcal{T}^{β}) : uninformative, e.g. regulations.
- Revised relations (\mathcal{T}_1^{α}) : differ in few words but disclose different meanings, e.g., increase \implies decrease.
- Mismatched relations (\mathcal{T}_2^{α}) : mutually exclusive meaning, e.g., new policies.

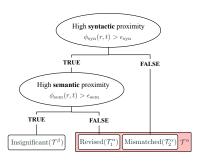
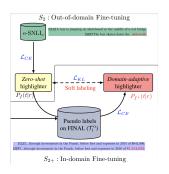


Figure 3: The heuristic filtering (categorization) procedure.

Proposed Pipeline S_2/S_{2+} : Highlighting Stages

A two-staged fine-tuning approach for the **domain-adaptive** highlighter:

- Out-of-domain fine-tuning on e-SNLI_c Train pairs.
- In-domain fine-tuning on the **Revised** pairs (\mathcal{T}_1^{α}) with pseudo-labels.



Data		Example			
e-SNLI _c	r	Children smiling and waving at camera			
C SIVEIC	t	The kids are frowning			
Revised Pairs	r	Net sales in the Americas increased 5%, or \$201.8 million Net sales in the Americas decreased 1%, or \$58.5 million			

Table 2: Example of the training pairs in S_2 and S_{2+} . The words in red means the negative; the highlighted words are positive, and the other words are None.

Proposed Pipeline S_2/S_{2+} : Highlighting Stages

As we transform the highlighting task into a **binary token classification task**, we can have models learn from the following objective functions:

Two-staged Fine-tuning

(S_2 Out-of-domain) Zero-shot highlighter f: (w/ e-SNLI_c)

$$\mathcal{L}_{\text{CE}} = \sum_{j} - \left(Y_{t}^{j} \log P_{f}^{j}\left(t | r\right) \right) + \left(1 - Y_{t}^{j}\right) \log \left(1 - P_{f}^{j}(t | r)\right)$$

(S_{2_+} In-domain) Domain-adaptive highlighter f^+ : (w/ pseudo-labels)

$$\mathcal{L}_{\mathrm{KL}} = \sum_{j} - \mathrm{KL}\left(\underbrace{P_{f}^{j}(t|r)}_{Prior} \|P_{f^{+}}^{j}(t|r)\right)$$

$$\mathcal{L}_{\mathrm{SL}} = \!\! \gamma \mathcal{L}_{\mathrm{CE}} + (1 - \gamma) \mathcal{L}_{\mathrm{KL}}$$

Empirical Data and Evaluation

Evaluation: Datasets and Metrics

Evaluation dataset for highlighting task

e-SNLI _c (Contradiction pairs)						
	#Pairs	Avg. $ t $	Avg. $ r $	Avg. $\#w_+$	Avg. #w_	
Train	183,160	8.2	14.1	2.0	6.2	
Test	3,237	8.1	15.3	2.1	6.0	
FINAL (FIN ancial AL pha) Dataset						
	#Pairs	Avg. $ t $	Avg. $ r $	Avg. #w ₊	Avg. #w_	
Train (\mathcal{T}_1^{lpha})	30,000	31.3	33.2	3.7	60.8	
Eval (\mathcal{T}_1^{α})	200	33.2	31.3	5.5	25.9	
Eval (\mathcal{T}_2^{lpha})	200	29.6	29.0	11.0	18.0	

Table 3: Statistics of e-SNLI_c and FINAL datasets.

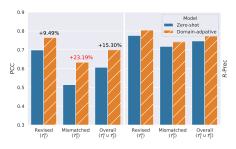
Evaluation metrics (R-prec: discrete; PCC: continuous)

- R-Prec: $\#(top-R \text{ important words} \cap Annotated words)/<math>R$
- PCC: Pearson Correlation Coefficient (Predictions, Avg.annotation)

Evaluation: Highlighting Performance

Domain-adaptive highlighting models (# 4) outperform all the other settings and without lossing the generality of token representations.

#	⊭ W.U.	Lab	eling	FINAL		e-SNLI _c	
"		Р	S	R-Prec	PCC	R-Prec	PCC
Zero-Shot							
1	✓	X	X	0.7469	0.6067	0.8565	0.7555
Pseudo few-shot							
2	Х	1	X	0.6968	0.6368	0.6302	0.5752
Domain-adaptive							
3	1	/	Х	0.7160	0.6555	0.8475	0.7305
4	1	/	1	0.7865*	0.7290*	0.8605	0.7566



Conclusion & Future Works

Conclusion and Future Works

This work

- A Financial signal highlighting **task**.
- A human-annotated evaluation dataset.
- A multistage pipeline with the domain-adaptive learning (S_2/S_{2_+})

Many possible future works include

- More effective: financial corpus is abundant; it is possible to pre-train a financial language models.
- More features: the bi-directional rationalization task; applying on other languages than English.
- More efficient: practitioners would like to explore more end-to-end way as an application, e.g., dense retrieval, explanation, etc.
- More modality: analyzing charts, tables, or cross-company, cross-sectors, etc.

Thank You!

Are there any questions you'd like to ask?

Jia-Huei Ju Yu-Shiang Huang Cheng-Wei Lin Che Lin Chuan-Ju Wang jhjoo@citi.sinica.edu.tw yushuang@citi.sinica.edu.tw lcw.1997@citi.sinica.edu.tw chelin@ntu.edu.tw cjwang@citi.sinica.edu.tw